skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wiese, Kay Jörg"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Depinning of elastic systems advancing on disordered media can usually be described by the quenched Edwards-Wilkinson equation (qEW). However, additional ingredients such as anharmonicity and forces that cannot be derived from a potential energy may generate a different scaling behavior at depinning. The most experimentally relevant is the Kardar-Parisi-Zhang (KPZ) term, proportional to the square of the slope at each site, which drives the critical behavior into the so-called quenched KPZ (qKPZ) universality class. We study this universality class both numerically and analytically: by using exact mappings we show that at least for d = 1, 2 this class encompasses not only the qKPZ equation itself, but also anharmonic depinning and a well-known class of cellular automata introduced by Tang and Leschhorn. We develop scaling arguments for all critical exponents, including size and duration of avalanches. The scale is set by the confining potential strength m2 . This allows us to estimate numerically these exponents as well as the m-dependent effective force correlator (w), and its correlation length ρ := (0)/|′ (0)|. Finally, we present an algorithm to numerically estimate the effective (m-dependent) elasticity c, and the effective KPZ nonlinearity λ. This allows us to define a dimensionless universal KPZ amplitude A := ρλ/c, which takes the value A = 1.10(2) in all systems considered in d = 1. This proves that qKPZ is the effective field theory for all these models. Our work paves the way for a deeper understanding of depinning in the qKPZ class, and in particular, for the construction of a field theory that we describe in a companion paper. 
    more » « less